
Writing a simple Cockpit instrument that interfaces to FSX via WideFS / FSUIPC
By David J Ault October 2008 Issue 2

Introduction

First a bit about myself. I have been interested in Flight Simulation since July 2008
when I had the mad idea to build a Learjet Flight Simulator. Being very short of cash I
decided to build it as cheap as possible. As I couldn’t afford any of the commercial
Glass Cockpit software I opted to use a combination of FreeFD and P8R’s Excellent
Alpha FMC. This worked really well but neither package had the Radio Control Head
display so I decided to have a go at writing my own. I had dabbled with a bit of C and
Fortran but have never had any programming training so it was quite a steep learning
curve.

This tutorial is partly for me to record what I have learnt but mainly to help others
who want to have a go at programming their own cockpit instruments. I am not
saying that this is the best way to do it, it just shows the way I do it. This tutorial
shows how to write a simple Airspeed Indicator for no particular aircraft.

You use this tutorial at your own risk. I take no responsibility for any loss of data or
any other problems you may have whilst following this tutorial.

All the tools I use in this tutorial are Freeware. I have quoted version numbers for the
software I have used but you may find that there are now later versions.

I have only tried this with XP so not sure if all this works with Vista. Also I have only
tried it with FSX but it may work with older versions of Microsoft Flight Simulator.

Setting up the programming environment

As mentioned above we will be programming using the C language. For this we will
use a package that gives you a complete C development environment.

Download the wxdevcpp_6.10.2_setup.exe from http://wxdsgn.sourceforge.net/ This
is based on MingW which is a windows port of the GCC Compiler and contains an
Editor, Compiler &Linker.

Install as follows:-

Run wxdevcpp_6.10.2_setup.exe

Assuming that you have not already installed a copy of wx-devcpp, press OK.

http://wxdsgn.sourceforge.net/
http://en.wikipedia.org/wiki/Mingw
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

Select your language and press OK

Ensure that only Mingw gcc is selected and press Next.

Read the License Agreement and click I Agree if happy to continue.

Leave Type of Install as Custom and click Next.

At Choose Start Menu Folder, click Next.

Select where you want to install it.
For this tutorial I have left it as C:\Program Files\Dev-Cpp

The program will install, then ask

I selected Yes

At the next screen click Next

Untick Read Sof.T’s wx-Dev-C++ Programming Tutorial and click on Close.

Wx-DevCpp will now run and ask you a few questions. Just click next to the
following:-

Click OK

wxDevC++ will now run. Close the ‘Tip of the day’ box and you should see the
following:-

Installing Allegro

Next we will install Allegro which is a games programming library that we will be
using for the graphics.

Click Tools – Check for Updates/Packages

http://en.wikipedia.org/wiki/Allegro_library

Select Dev-C++ primary devpak server then click Check for Updates.

In the Update List, Tick Allegro then click Download Selected.

When prompted, Click Install >

When installation has completed click Finish. Then close the WebUpdate Window.

Your programming environment is now ready to use.

Writing your program

As mentioned in the introduction, the cockpit instrument that we are going to create is
an Airspeed Indicator. Let’s start by creating a folder on the Desktop and call it
airspeed_indicator.

In this folder we need put a couple of files from the FSUIPC SDK (Software
Development Kit).
You can download the SDK from http://www.schiratti.com/dowson.html.

The files you will need to copy into your airspeed_indicator folder are
FSUIPC_User.h & FSUIPC_User.lib. You will find these files in the
UIPC_SDK_C.zip file within the main zip file.

Also within the airspeed_indicator folder create 2 other folders called bin &
objects.

At this point you would normally copy the alleg40.dll file from the C:\Program
Files\Dev-Cpp\Dll directory into the bin directory that you have just created.
However there is a problem with alleg40.dll in this package that causes a windows
‘Data Execution Prevention’ message to be displayed. Therefore I have included an
alleg40.dll file with this tutorial (see tutorial_files directory) that you should copy to
your bin directory. It is actually alleg43.dll renamed to alleg40.dll but seems to work
fine.

Now for some graphics

I’m all for making things as easy as possible so the first thing we need to do is get
hold of a suitable image of an Airspeed Indicator. After 2 minutes of looking on
Google Images I found this one.

http://www.schiratti.com/dowson.html

I’m assuming you can use a graphics editing program as to include how to edit
pictures would make this tutorial huge. You can download a great free photo editing
program at http://www.gimp.org/windows.

Basically you are looking to turn the above image into something like this:-

Notice the pink colour around the pointer. This is what Allegro uses as a mask. i.e.
it will not be shown on the screen so you will only see the pointer. This pink colour
has to have the following colour properties: Red = 255, Green = 0, Blue = 255.

Save images as .bmp files. I specify a 24 Bit Colour Depth.

For this tutorial, use the bitmaps that I have created. Copy the background.bmp and
pointer.bmp files that came with this tutorial into the bin directory that you created
earlier.

http://www.gimp.org/windows

You now have everything you need to start coding.

The Dev-C++ development environment that you have installed has its own editor.

If wxDevc++ is not already running Click:-
Start – All Programs – wx-Devcpp – wx-Devcpp

You should now see the following window:-

Click on File – New – Project

Select Console Application. Type airspeed_indicator as the project name and tick
the box that says C Project then click OK.

Navigate to the airspeed_indicator folder that you created earlier and save your
project as airspeed_indicator.dev

You will see that it has inserted a file called main.c under airspeed_indicator within
the Project Tab and also started writing the program for you.

Delete the lines of code that are there.

Click Tools – Editor Options.

Select the Display tab and tick Line Numbers. Then click OK.

Click on Project – Project Options.

In the General tab, select Win32 GUI.

In the Additional Command line options tab, in the Linker box enter :-

-lalleg FSUIPC_User.lib -mwindows
This tells it to use the allegro and FSUIPC libraries and that it is a windows program.

In the Build Options tab change Executable output directory to bin and Object file
output directory to objects. Then click OK.

Click File – Save All

It will ask where you want to save main.c. Ensure it has defaulted to your
airspeed_indicator folder and press Save.

Your airspeed_indicator directory should now look something like this.

Exit wx-DevC++

To save time typing in the program, copy the main.c file that accompanies this
tutorial into your airspeed_indicator folder (overwriting the one that is already
there).

To run wx-DevC++ and automatically load your project, Double click on the
airspeed_indicator.dev file within the airspeed_indicator directory.

You should now see the program in the editor. If not then click on main.c in the
Project Inspector window.

Click Execute – Rebuild All

The program should Compile, Link and report 0 Errors & 0 Warnings.

If you do get any warnings or errors then you have probably done something wrong
and will need to check what you have done against this tutorial.

Note you do get a .drectve message but this is nothing to worry about.

If you look in the bin folder within your airspeed_indicator directory you should see
a file called airspeed_indicator.exe

Double click on this file and the Airspeed Indicator program should run.

Drag the gauge to the required location on the screen. Use the ‘i’ and ‘d’ keys to
increase or decrease the size.

Notice that it says Not Connected on the top bar. Assuming that you have installed
and are running FSUIPC / WideFS then when you run FSX this should change to
Connected. The pointer will start moving when speed is greater than 35 Knots.

Exit the airspeed_indicator program by clicking on the cross in the top right hand
corner.

Notice that you now have a airspeed_indicator.ini file in your bin directory.
When you next run airspeed_indicator.exe it will read this .ini file and the program
will appear in the same location and be the same size as when you last exited it.

Useful reading material

If you are not familiar with the C programming language, the Allegro programming
library and FSUIPC / WideFS then I suggest that you read their documentation.

There are loads of good free guides to the C programming language on the net.
A particularly good one is at :-
http://www.oucs.ox.ac.uk/documentation/userguides/c/l922.pdf

The Allegro documentation is here :-
C:\Program Files\Dev-Cpp\Docs\Allegro\allegro.html

FSUIPC / WideFS Documentation is included with the programs and programming
instructions and examples are to be found in the FSUIPC SDK :-
http://www.schiratti.com/dowson.html

http://www.oucs.ox.ac.uk/documentation/userguides/c/l922.pdf
C:\Program Files\Dev-Cpp\Docs\Allegro\allegro.html
http://www.schiratti.com/dowson.html

Understanding how the program works

#include <allegro.h>
#include <winalleg.h>
#include <stdio.h>
#include <stdlib.h>
#include "FSUIPC_User.h"

The above section defines which header files (.h files) should be included. Generally
there are two types of header files. System header files, which declare the interfaces to
parts of the operating system and are included in your program to supply the
definitions and declarations that you need to invoke system calls and libraries. Other
header files contain declarations for interfaces between the source files of your
program.

stdio.h and stdlib.h should usually be included in a C program. allegro.h and
winalleg.h are required for the allegro games programming features and
FSUIPC_User.h is required for the commands that interrogate the simulator via
FSUIPC.

int x_pos = 0, y_pos = 0;
int size = 300;
int message_wait_time = 5;
int loop = 1, keypress;
int screen_colour_depth;
float scale_factor;
long knots;
float angle, knots_fp;
char buffer[100];
DWORD dwResult;
HDC hdc;
FILE *inifile;
BITMAP *scrat, *background, *pointer;
PALETTE palette;

The above section defines the variables. int , long & float specifies which variables
are defined as integers , long and floating point.

DWORD is a 32 bit unsigned integer and is required when reading and writing values
via FSUIPC.

HDC (Handle to Device Context) is a special variable requires when using the
function GetDeviceCaps() to read the screen colour bit depth.

FILE is used to define a pointer to a file. In this case ‘inifile’ used when loading or
saving the .ini file.

BITMAP & PALETTE define variables required by Allegro when loading / storing
the graphics images.

http://en.wikipedia.org/wiki/Header_file

int initialise_window(void);
int connect_to_sim(void);
int update_display(void);
int create_bitmaps(void);
int get_knots(void);
int load_ini_file(void);
int save_ini_file(void);
int act_on_keypress(void);
int close_program(void);
void exit_hook (void);

I have separated out sections of the code into a number of functions. This makes the program
neater and easier to understand. The above section defines variable types that are passed into
these functions and also the variable type that is returned by the function. Void indicates that
nothing is to be passed into these functions when they are called and all return an integer
except the exit_hook() function.

int main(void)
{
 // Load window position and window size from .ini file
 load_ini_file();

 // Create window, Start Allegro, Display window & Get / Set colour depth
 initialise_window();

 //Loads the graphic files (background & pointer.bmp) . Displays Error if unsuccessful
 if(create_bitmaps() == -1)
 {
 textprintf_centre(screen, font, size / 2, size * 0.15, 65535, "***
Error ***");
 textprintf_centre(screen, font, size / 2, size * 0.40, 65535, "No
Graphics files");
 textprintf_centre(screen, font, size / 2, size * 0.65, 65535,
"Press Key to Exit");

 // Wait for key press
 readkey();

 // Terminate Allegro
 close_program();

 // Return a value of -1 when exiting
 return(-1);
 }

 // Draws the background image and the pointer
 update_display();

 //Establish a connection to the simulator
 connect_to_sim();

 //Repeat until loop is not equal to 1
 while(loop == 1)
 {
 //Read speed from Simulator
 get_knots();

 //Loop while a key is pressed
 while(keypressed())
 {
 //Process key press
 act_on_keypress();

 //Draw / redraw instrument

 update_display();
 }
 //Clears the keyboard buffer to prevent buffered keystrokes
 clear_keybuf();

 //Draw / redraw instrument
 update_display();
 }
 //Save window position & window size to a .ini file
 save_ini_file();

 //Terminate Allegro and disconnect FSUIPC
 close_program();

 //Return a value of 0 when exiting
 return (0);
} END_OF_MAIN() //This is required at the end of the main function for all Allegro programs

Detailed descriptions of each function:-

//Function to Create window, Start Allegro & Get / Set colour depth
int initialise_window(void)
{
 //These two lines get the display colour depth
 hdc = GetDC(NULL);
 screen_colour_depth = GetDeviceCaps (hdc, BITSPIXEL);

 //Initialise Allegro & install Allegro keyboard interrupt handler
 if (allegro_init() != 0) return 1;
 install_keyboard();

 //Forces colour depth to be same as display
 set_color_depth(screen_colour_depth);

 //The next few lines create an initial window of 800x600
 if (set_gfx_mode(GFX_AUTODETECT_WINDOWED, 800, 600, 0, 0) != 0) {
 if (set_gfx_mode(GFX_SAFE, 800, 600, 0, 0) != 0) {
 set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
 allegro_message("Unable to set any graphic mode\n%s\n",
allegro_error);
 return 1;
 }
 }

//Resize and position window based on values read from the .ini file. 6 is added to width and 25 to
height as you have to take into account the size of the windows borders.
 SetWindowPos(win_get_window(), 0, x_pos, y_pos, size+6, size+25,
SWP_ASYNCWINDOWPOS);

 //Ensures that the program will carry on running in the background
 set_display_switch_mode(SWITCH_BACKGROUND);

 //Factor to multiply by to ensure graphics are scaled correctly whatever the window size is set to
 scale_factor = ((float)size / 419);

//Specifies that the function exit_hook() is run when the window close is clicked on
set_window_close_hook(exit_hook);

 //Returns a value of zero (This value is not used)
 return(0);
}

//Function to establish a connection to the Sim via FSUIPC / WideFS
int connect_to_sim(void)
{
 //Set Indicator to start & update display
 knots_fp = 35.0;
 update_display();

 //Loop until connection is established or loop is not equal to 1
 while (!FSUIPC_Open(SIM_ANY, &dwResult) && loop == 1)
 {
 //Change window title to show ‘not connected’ status
 set_window_title("Airspeed <<< Not Connected >>>");

 //Wait 100milliseconds. Reduces Network and CPU load
 Sleep(100);

 //Loop while a key is pressed
 while(keypressed())
 {
 //Process keypress and update display
 act_on_keypress();

 update_display();
 }
 //Clears the keyboard buffer to prevent buffered keystrokes
 clear_keybuf();
 }
 //Change window title to show ‘connected’ status
 set_window_title("Airspeed >>> Connected <<<");

 //Send a ‘connected’ message to the Simulator screen
 if (FSUIPC_Write(0x3380, 29, "Airspeed Indicator Connected\0",
&dwResult)) FSUIPC_Process(&dwResult);
 if (FSUIPC_Write(0x32FA, 2, &message_wait_time, &dwResult))
FSUIPC_Process(&dwResult);

 //Return a value of 0 when exiting function
 return(0);
}

//Function to update the display
int update_display(void)
{
 //Ensure speed indication cannot be less than 35 knots or greater than 262 knots
 if(knots_fp < 35) knots_fp = 35;
 else if(knots_fp > 262) knots_fp = 262;

 //Calculate angle of the pointer using a 4th order polynomial to compensate for the non linear scale
 /*
 * Ok, this sounds really complicated but it’s actually quite easy.
 * I created a spreadsheet with one column containing the knots values (0 – 260) in 5 knot
 * increments. Then compiled and ran this program with manually entered angles to determine
 * the angle for each speed value in the spreadsheet. I entered this angle value in the second
 * column. I then plotted knots vs. angle. I clicked on the plotted line to highlight it then right
 * clicked and selected ‘Add Trendline’. I selected Polynomial, Order 4 and ticked
 *‘Display Equation on chart’.
 * I then used this equation to create another column of calculated values and tweaked the poly
 * values to get the best match (spreadsheet attached).
 * Note: Allegro uses a value of 0-255 for the angle to give 0-360 degrees.
 */
 angle = (6.06e-8*pow(knots_fp,4)) - (3.98e-5*pow(knots_fp,3)) + (7.05e-
3*pow(knots_fp,2)) + (0.78*knots_fp) - 18.28;

 //This copies the whole of the background image into the scaled scrat bitmap
 stretch_blit(background, scrat, 0,0,419,419,0,0,size,size);

 //This copies the pointer bitmap / sprite into the scaled scrat bitmap. It is sized by scale_factor.
 pivot_scaled_sprite(scrat, pointer, size / 2, (size / 2), 17, 167,
ftofix(angle) , ftofix(scale_factor));

 //The scrat bitmap is then copied to the screen (window). This is a double buffering technique
 // that prevents you seeing the redraws and gives smoother graphics.
 blit(scrat, screen, 0, 0, 0, 0, size, size);

 //Small delay added to reduce CPU load
 Sleep(10);

 // Return a value of 0 when exiting function
 return(0);
}

http://en.wikipedia.org/wiki/Polynomial#Graphs
http://en.wikipedia.org/wiki/Double_buffering#Double_Buffering_in_Computer_Graphics

// Function to create bitmaps
int create_bitmaps(void)
{
 //Create a bitmap to be used to write the graphics to before copying to screen (double buffering)
 scrat = create_bitmap(size, size);

 //Create Background and Pointer Bitmaps from .bmp file images. If unsuccessful, return -1
 if((background = load_bitmap("background.bmp", palette)) == NULL)
return(-1);
 if((pointer = load_bitmap("pointer.bmp", palette)) == NULL) return(
-1);
 // Return a value of 0 when exiting function
 return(0);
}

// Function to read airspeed from the simulator program
int get_knots(void)
{
 // Get airspeed from Sim via FSUIPC / WideFS (value read is Knots * 128)
 // If at this point it fails to read from the sim it runs the connect_to_sim() function
 if(!FSUIPC_Read(0x02BC, 4, &knots, &dwResult) ||
!FSUIPC_Process(&dwResult)) { FSUIPC_Close(); connect_to_sim(); }

 // Stores knots as a floating point, this gives a smoother pointer movement than integer value
 knots_fp = (float)knots / 128;

 // Return a value of 0 when exiting function
 return(0);
}

// Function to load window position and window size if .ini file is available
int load_ini_file(void)
{
 // Open .ini file if it exists
 if((inifile = fopen("airspeed_indicator.ini", "r")) != NULL)
 {
 // If not at end of file then read 1st line of .ini file as a string, convert it to integer and
 // store it as x_pos
 if(!feof(inifile))
 {
 fgets(buffer, 99, inifile);
 x_pos = atoi(buffer);
 }

 // If not at end of file then read 2nd line of .ini file as a string, convert it to integer and
 // store it as y_pos
 if(!feof(inifile))
 {
 fgets(buffer, 99, inifile);
 y_pos = atoi(buffer);
 }

 // If not at end of file then read 3rd line of .ini file as a string, convert it to integer and
 // store it as size
 if(!feof(inifile))
 {
 fgets(buffer, 99, inifile);
 size = atoi(buffer);
 }
 // Close the .ini file
 fclose(inifile);
 }

 // Return a value of 0 when exiting function
 return(0);

}

// Function to save Window position and size to a .ini file
int save_ini_file(void)
{
 // Get window properties to determine position and size (stored in structure ‘rect’)
 RECT rect;
 if (GetWindowRect(win_get_window(), &rect))
 {
 // Create / Overwrite .ini file
 if((inifile = fopen("airspeed_indicator.ini", "w")) != NULL)
 {
 //Write X and Y coordinates of the window and its size to the .ini file
 fprintf(inifile, "%li\n",rect.left);
 fprintf(inifile, "%li\n",rect.top);
 fprintf(inifile, "%d\n",size);

 // Close the .ini file
 fclose(inifile);
 }
 }
 // Return a value of 0 when exiting function
 return(0);
}

// Function to process keyboard key presses
int act_on_keypress(void)
{

 // Get window properties to determine position (stored in structure ‘rect’)
 RECT rect;
 if (GetWindowRect(win_get_window(), &rect))
 {
 // Save position in x_pos & y_pos variables
 x_pos = (int)rect.left;
 y_pos = (int)rect.top;
 }

 // Read integer value of key pressed
 // See program included with this tutorial that displays key codes
 keypress = readkey();

 //Run code for whichever key pressed
 switch (keypress)
 {
 // ‘i’ key pressed (increase windows size)
 case 2409:

 // Only increase windows size if size less than 600
 if (size < 600) size+=1;

 // Recreate scrat bitmap with new size
 destroy_bitmap(scrat);
 scrat = create_bitmap(size, size);

 //Scale window to new size
 SetWindowPos(win_get_window(), 0, x_pos, y_pos, size+6, size+25,
SWP_NOZORDER);

 //Recalculate scale factor
 scale_factor = ((float)size / 419);

 // Causes the switch statement to conclude
 break;

 // ‘d’ key pressed (decrease windows size)
 case 1124:

 // Only decrease windows size if size greater than 142
 if(size > 142) size-=1;

 // Recreate scrat bitmap with new size
 destroy_bitmap(scrat);
 scrat = create_bitmap(size, size);

 //Scale window to new size
 SetWindowPos(win_get_window(), 0, x_pos, y_pos, size+6, size+25,
SWP_NOZORDER);

 //Recalculate scale factor
 scale_factor = ((float)size / 419);

 // Causes the switch statement to conclude
 break;
 }
 // Return a value of 0 when exiting function
 return(0);
}

// Function to tidy up before the program closes.
int close_program(void)
{
 //Shuts down the FSUIPC connection
 FSUIPC_Close();

 //Shuts down Allegro
 allegro_exit();

 // Return a value of 0 when exiting function
 return(0);
}

// Function called when window is closed
void exit_hook(void)
{
 // Setting loop = 0 causes it to exit from the above loops in main() and connect_to_sim()
 loop = 0;
}

I hope that this tutorial has given you a basic understanding of how to write your own Cockpit
Instrument and also given you the confidence to build on this knowledge and have a go at writing
your own.

Like I said in the Introduction, I am not a qualified programmer and when I write a program I
have a ‘programming in C’ book on one side and the ‘Allegro programming guide’ on the other
side and I keep trying things until I get the results that I want. This is a great way of learning.

Cheers

Dave
www.learjet45chimera.co.uk

www.learjet45chimera.co.uk

